
The rise of green threads

Erik Pellizzon

Go Developer
Freelancer
https://erikpelli.pp.ua

In the presentation, underlined text contains the sources

Open Source is like communism, but it works

Download the slides of this
presentation

https://erikpelli.pp.ua

History
Why did we need concurrency?

start

Ancient PCs History

1991: release of Linux 0.01, with a
simple (100 C lines) integrated
scheduler (non-preemptive, we
have to wait for 2.6 in 2003)

1995: release of Windows 95, the
first Windows with a preemptive
scheduler

More than 30 years ago!

https://github.com/draveness/linux-archive/blob/master/0.01/kernel/sched.c

Linux 0.01 -> Intel 80836, 16MHz, 1MB
RAM

Windows 95 -> Intel 80486, 16MHz, 4MB
RAM, supports application-level threads

Only 1 core! Basically, processes and
threads were using only “fake”
concurrency, handled by the OS
Scheduler (part of Kernel)

https://en.wikipedia.org/wiki/Intel_Inboard_386
https://www.vogons.org/viewtopic.php?t=44809
http://www.fandecheng.com/personal/interests/ewindows/advanced_windows/win95_multitask.htm

Coroutines
Lightweight concurrency for weak CPUs

1

2

1

Make it clear!

The original purpose of coroutines
was to be a lightweight alternative to
threads, where the concurrency
wasn’t handled by the OS scheduler
but directly from the process itself.

Since the CPUs had only 1 core, their
design was very simple, to reduce
overhead, reducing the overhead
that OS threads implied.

time
Process
Thread

First notable usages
1967: Simula 67, the first language
with support for coroutines (+ the first
OOP language). Quite limited, the
code explicitly needed to return the
control to the runtime (these are the
original coroutines).

1997: Java 1.1 introduced Threads API,
using “green threads” as the JVM
implementation behind it. In 2000,
Java 1.3 replaced them with native
threads (+300% with a 4 threads CPU).

Features:
• single core CPUs
• < 10 MB RAM

IBM
System/370
(Mainframe)

“In green threads all Java threads
execute within one operating system

lightweight process (LWP)”

https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Green_thread
https://www.sco.com/developers/java/j2sdk122-001/ReleaseNotes.html#THREADS
https://www.sco.com/developers/java/j2sdk122-001/ReleaseNotes.html#THREADS
https://www.sco.com/developers/java/j2sdk122-001/ReleaseNotes.html#THREADS

1 : 1
OS

Thread
Java

Thread
wraps

exposes API to
your code

Still valid nowadays

Modernity

CPU manufacturers
introduced multiple
techniques to overcome
the limits of a single core
(including multiple
parallel cores)

Homework (for you):
- HyperThreading
- CPU architectures
- CPU cache (L1, L2,

L3)
- Power and Energy

efficient cores
- CPU Frequency
- Specialized CPU

instructions &
extensions (e.g.
AVX2)

- Internal RISC core in
CISC (e.g. x86)

Modern Desktop PC
Typical modern CPU:

- i5 14600k
- 4GHz (250x on single thread vs

16MHz 80486)
- 20 parallel threads

(simplification), 16GB RAM
(4096x)

This supports the much more
complex scheduler of a Modern OS.

1 2 3
CORES

Syscall response

Create thread syscall

Context
Switch

Threads

Global variables + Heap

Thread 2

Thread 3 Thread 4

Thread 1

Process

Modern scheduling =
Concurrency + Parallelism

Core 1 Core 2

time

Thread
1 Thread

2

Thread
3

Thread
4

Core 1 (app main) Core 2 (app) Core 3 (OS)

Thread
execution

Simplified diagram using static cores

Another
process

1. Thread calls a syscall,
performs I/O,
preemptive time slot
expires

2. Scheduler dumps
current registers,
stack and counter

3. Scheduler restore R,
S and C of another
process (or thread)

4. Resume code
execution

~100 times per second (every 10/15ms)
~1000ns for the context switch
(0,000001s) = 1 µs

Overhead every 1s: 1000ns*100 =
0,1ms = 0,01%

Thread
creation
waiting
time

https://stackoverflow.com/questions/12320748/how-often-per-second-does-windows-do-a-thread-switch
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html

Threads issues
- A system call is required for each creation and termination of a thread
- High initial stack size (1MB+ in Windows, 10MB in Linux)
- The time the thread is actually started since the request is made is

significant (~1ms, up to 10ms if there are a lot of threads to spawn)
- A large number of threads (100+) significantly slows down overall

performance, threads are designed to remain few for each process
- Processes have limited control over the scheduling of their threads

(apart from choosing the priority)
- Require continuous context switches (only becomes a problem with a

really large number of threads, perhaps thousands)

https://unix.stackexchange.com/questions/473416/why-on-modern-linux-the-default-stack-size-is-so-huge-8mb-even-10-on-some-di
https://stackoverflow.com/a/56998469

Internet

- TCP handshake
- TLS exchange (2 RTs)

- HTTP request (to the server)
& response (to the client) >>> More $$$ for servers

Typical HTTP Request
I/O Wait (50 ms - 500 ms)

Compute
(< 1 ms)

Depends on user location (RTT),
ISPs routes, etc.

4 Round Trips for each request

https://blog.cloudflare.com/introducing-0-rtt/

Coroutines++

Optimized for modern CPUs and OS
Various names, similar concepts

Ideal for I/O bound tasks

● Virtual Threads (Java, Project Loom)

● AMPHP (+ PHP 8.1 introduced native
fibers)

● Fibers

● Goroutines (Go)

● Lightweight threads

● Coroutines

● Python’s asyncio uses coroutines
internally (3.4+)

● …

- insignificant creation time
- up to thousands (or millions) of

coroutines with a low memory
impact

- CPU is reassigned by language
runtime when a coroutine is blocked
by I/O

Becoming popular since 2010s

2021

2023

2009

2014

Backend
Languages

https://docs.python.org/3/library/asyncio-task.html

PART II
Implementation

Go by Google
● A real programming language

created by real software engineers
in a real company, I heard they also
organize free developers meetings
with alcohol

● Focused on concurrency
(goroutines) and simplicity

● 15 years old
● Compiled into a single file

(dependencies are statically linked)

C
executable

libc.so
(dinamically

linked)

Host

SYSCALL
fopen()

Go executable

Go runtime
(goroutines,

garbage
collector, OS

calls, etc.)

SYSCALL

func main():
….
os.ReadFile()
……
……….

Maphash

Maphash
Runtime

AES instructions
(& fallback if not
supported)

(+ Fallback using Go
code with XORs)

Example of optimization for modern CPUs

runtime/ alg.go

(amd64)

Benchmark on my laptop
Average of 5 measures

Initialized at runtime
maphash_runtime (AES)
8.348 ns
maphash_purego (no AES)
21.692 ns +160%

Compiled using flag: -tags purego

asm_<arch>.s

Implemented using a
variant of wyhash

Fun fact
I opened an issue in

Go repository (GitHub) while
analyzing the source code

https://github.com/golang/go/blob/6853d89477e0886c7c96b08e7efaf74abedfcf71/src/hash/maphash/maphash.go
https://github.com/golang/go/blob/6853d89477e0886c7c96b08e7efaf74abedfcf71/src/hash/maphash/maphash_runtime.go
https://github.com/golang/go/blob/6853d89477e0886c7c96b08e7efaf74abedfcf71/src/hash/maphash/maphash_runtime.go
https://github.com/golang/go/blob/6853d89477e0886c7c96b08e7efaf74abedfcf71/src/runtime/hash64.go
https://github.com/golang/go/blob/6853d89477e0886c7c96b08e7efaf74abedfcf71/src/runtime/alg.go
https://github.com/golang/go/blob/6853d89477e0886c7c96b08e7efaf74abedfcf71/src/hash/maphash/maphash_runtime.go
https://github.com/golang/go/blob/6853d89477e0886c7c96b08e7efaf74abedfcf71/src/hash/maphash/maphash_purego.go
https://github.com/golang/go/blob/6853d89477e0886c7c96b08e7efaf74abedfcf71/src/runtime/asm_amd64.s
https://github.com/golang/go/blob/master/src/runtime/hash64.go
https://github.com/golang/go/issues/69940

Initial stage
(2009 - 2014)

- At that time it was a completely new
language, initially the compiler was
built using C

- Initially it wasn’t extremely optimized,
it just needed to work

- It wasn’t yet popular or widespread
- Go 1.5 (2015) completely changed the

goroutine scheduler and garbage
collection, Go 1.14 (2020) added fully
preemption (10ms) to the goroutines
scheduler (before that, it was
cooperative)

https://go.dev/blog/go1.5
https://docs.google.com/document/d/1TTj4T2JO42uD5ID9e89oa0sLKhJYD0Y_kqxDv3I3XMw/edit?tab=t.0#heading=h.mmq8lm48qfcw
https://go.dev/doc/go1.14

Go app
(Thread 3)

Scheduler
The elephant in the room

- Go scheduler assigns at a given time a
goroutine to an OS thread (and handles
the goroutines context switches)

- It limits the number of concurrent active
OS threads to the value of environment
variable GOMAXPROCS (its default value
is the number of CPU threads, e.g. quad
core CPU -> its value is 4)

- Part of Go runtime, and it uses CPU itself
(overhead). Average goroutine context
switch: 50ns (20 times less than OS
scheduler context switch).

OS
scheduler

Thread
1

Threads are
scheduled
independently by
OS, not all threads
need to run at the
same time.
Both the schedulers
(OS and Go runtime)
runs on the CPU.
The OS scheduler is
part of the kernel
(very low level,
privileged
instructions).

Go
scheduler

#790

Goroutines

#1 #2 #999. . . .

CPU

Go app
(Thread 1)

Go app
(Thread 4)

Go app
(Thread 2)

Chrome
(Thread 2)

Chrome
(Thread 1)

Calculator
(Thread 1)

Thread
2

Thread
3

Thread
4

Thread Goroutine #1 #2 #2Go
scheduler

Go
scheduler

https://levelup.gitconnected.com/performance-analysis-of-goroutine-switching-d91a49604cae

P-M-G model
Designed to maximize the performance the CPU
can offer.

G: Goroutine

M: Machine, aka OS Thread

P: Processor, aka a logical CPU core (e.g. there
are 4 Processors in a quad core CPU)

Initial stack size for goroutines (G) is 2KB (5000
times less than the 10MB of a Linux OS thread,
virtual memory).
In addition to goroutine stack, the OS Thread (M)
has its own 8KB stack to execute the Go runtime
(e.g. during goroutines context switches).

P1P0

“The GOMAXPROCS variable limits the number of
operating system threads that can execute
user-level Go code simultaneously (M). There is no
limit to the number of threads that can be blocked in
system calls on behalf of Go code; those do not
count against the GOMAXPROCS limit.”

M0

os.Open() blocked the OS
thread with a syscall

G0
M1 M2

G1 G2

G3

G4

Dual core CPU

https://medium.com/a-journey-with-go/go-goroutine-os-thread-and-cpu-management-2f5a5eaf518a
https://medium.com/a-journey-with-go/go-how-does-the-goroutine-stack-size-evolve-447fc02085e5
https://unix.stackexchange.com/questions/473416/why-on-modern-linux-the-default-stack-size-is-so-huge-8mb-even-10-on-some-di
https://github.com/golang/go/blob/master/src/runtime/HACKING.md
https://pkg.go.dev/runtime#hdr-Environment_Variables

1. Go runtime creates PROCS using
the GOMAXPROCS variable, default
value is number of cores

P0 P1

2. Runtime assigns P0 to main goroutine. Runtime also
creates a thread M because there is no M in the idle
threads list.
Gmain asks to create another goroutine G1 (and the
runtime creates another thread, M1)

P0

P idle
queue:

M0

G
main P idle queue:

P2 P3

P1
M1

G1

P2 P3

3. G1 reads a file. The syscall blocks the entire
OS thread until it finishes, so Go detaches its M
from P, freeing up space for another potential M
to be executed in P.

P0
M0

G
main

P idle
queue:

P1

M1
G1 P2 P3

4. Read file syscall finishes. Go tries to do, in order:
1. acquire the exact same P (P1 in our example), if

it’s still in the idle queue, and resume the
execution

2. acquire any P in the idle list and resume the
execution

3. put the goroutine back into the Global Run
Queue and put the M associated back into the
idle threads list (a queue with idle M threads that
will be used to recycle existing OS threads
when a new thread is needed)

Run queues (FIFO)

- 1 global (shared) run queue
Go runtime puts the new
goroutines in this queue (e.g.
after go func {...})

- 1 local run queue for each
processor P
This reduces thread contention
to access the queue and takes
advantage of CPU caches

P0

G4

G3

G5 G6 G7 G8Global RQ

P1

G2

G0

M2 M1

M1 executes G2,
then put G2 at
the end of the
queue and
executes G0

M0

G1

G1/M0 was running in P0.
Goroutine called a syscall to open a
file, which locked the whole thread.

Go runtime moved the blocked
thread/goroutine to idle state and
created M2 to run the remaining
goroutines in P0 local run queue

If we force the value of P (with
GOMAXPROCS) to a number higher

than the number of actual CPU
cores, there will be more OS threads

(M) running at the same time than
the number of cores, and the OS
scheduler will take care of them,

since they’re OS threads

Local
RQs

https://stackoverflow.com/questions/75037734/why-golang-scheduler-uses-two-queues-global-run-queue-and-local-run-queue-to-m

Netpoller & Work Stealing

Implemented in runtime.findRunnable()

What happens when the scheduler has to choose another
goroutine to execute:

- Check if it’s necessary to perform Garbage Collection
- No GC Needed? 1 time every 61 check if the Global RQ

contains any goroutine and, if there is, choose it for the
execution (to avoid GRQ starvation if LRQ goroutines
never finish)

- Check the Local Run Queue for the next goroutine
- Local Run Queue is empty? Check the Global Run Queue
- Poll Network (e.g. Linux’s epoll syscall).

When executing a network operation (e.g. TCP socket),
instead of blocking the entire thread, the goroutine is
moved to the netpoller’s queue (part of Go runtime).
In this step, the netpoller is run to see if any of the
goroutines associated with it have received data, and if
so, the target goroutine is moved back into its LRQ.

- Try to steal a goroutine from the local queue of another
Processor (work stealing) P0 P1

G2

G1

M2 M1

G0

G3

Running

LRQsNetpoller

G4

https://github.com/golang/go/blob/840ac5e037e8182444da957d0c48ffeb330d7cd2/src/runtime/proc.go#L3261
https://morsmachine.dk/netpoller

Preemptive scheduling

The execution of a goroutine can
stop anytime due to:

- I/O / syscall / call to runtime
pkg function

- assigned preemption time
slot finishes (10ms)

There is a separated OS thread
(M), called sysmon (system
monitor).
It’s part of Go runtime, but it
doesn’t have an associated P, so
it doesn’t limit performance.

If the sysmon thread detects that
a goroutine is still running after
the time slot end, it sends a
SIGURG signal to its thread,
forcing the thread to pass
control to the scheduler (before
Go 1.14, released in 2020, the
scheduler wasn’t fully
preemptive).
The scheduler dumps the
program counter, registers and
stack (like a context switch) and
then executes another
goroutine.

https://unskilled.blog/posts/preemption-in-go-an-introduction/
https://github.com/golang/proposal/blob/master/design/24543-non-cooperative-preemption.md
https://github.com/golang/proposal/blob/master/design/24543-non-cooperative-preemption.md

Benchmarks
Threads vs Goroutines in Go

GitHub Repository

https://github.com/ErikPelli/requests_concurrency_benchmark

runtime.LockOSThread()

“LockOSThread wires the calling
goroutine to its current operating system
thread. The calling goroutine will always
execute in that thread, and no other
goroutine will execute in it, until the
calling goroutine has made as many calls
to UnlockOSThread as to LockOSThread.
If the calling goroutine exits without
unlocking the thread, the thread will be
terminated.”

….

go func() {
 i++
}

go func() {
 runtime.LockOSThread()
 i++
}

VS

From now on, I will call it a Go “thread”.
This is a 1 : 1 mapping between a goroutine and
an OS thread.

P0

MG0

https://pkg.go.dev/runtime#LockOSThread

CPU Bound task

Goroutines perform better than I expected for CPU
bound tasks, and in fact there isn’t much overhead.

I tried different values of n (8, 32, 100) and derived some
empirical relations. Here I haven’t reported individual
data, but you can run the benchmarks yourself using the
GitHub repo.

- For lower values of k, goroutines beat threads by
~10-15%

- For the maximum tested value of k (100,000), the
difference between the two is insignificant

Threads aren’t the right choice if we have to continuously
spawn them, like we do with goroutines.

1 2 3

n

4

SHA256

k

0 < n <= 100
10 < k <= 100,000

task
channel

Recycle the threads - Here we ignore the startup time by
starting threads/goroutines before the
start of the benchmark and keeping
them open. We send the tasks using
channels, and then wait for the
response.

- After some empirical benchmarks on
my 8-core laptop, I saw that as long as
n is less than the number of CPU
cores, threads beat goroutines (up to
~10%, the lower the n, the higher the
advantage of threads)

- After the threshold, goroutines
perform better: schedulers, I’m
watching at you :D

finished
channel

1 2 3

n

4

SHA256

k

Should I use threads in Go? (instead of goroutines)

- Go encourages the usage of goroutines, and
you would lose of the most important
features of the language if you lock the
thread

- To gain some advantage, you need to keep
the same threads open all the time

- In some (very) limited circumstances, threads
may offer slightly better CPU performances,
but memory usage would be generally higher

NO
BUT

There are some exceptions
where Go “threads” are

needed (e.g. high performance
networking using XDP)

I/O Bound task
- For each request, we create a new HTTP client,

independent of the others, to avoid HTTP caches
and keep-alives, which could invalidate
measurements

- The server runs in another process on the same
local machine, to avoid sharing the coroutines
scheduler between clients and server (which could
invalidate measurements)

- Each goroutine/thread will run exactly one request,
and then wait for the server response, and we keep
measuring until all clients have received a response

- GOMAXPROCS is set to a value large enough to
execute all threads concurrently (when we use
LockOSThread)

“Hello World”
Server

1 2

3Client n

4

Each value is the
average of 5
measurements

+25,69% +67,85% +96,19% +87% +104,38%

time (lower is better)

concurrent
requests

Why not a thread pool in the I/O benchmark?

- Usually, when working with threads, you spawn a
fixed amount of them and put them in a pool to reuse
them later and reduce their overhead

- However, if you do this with I/O, you will have a
limitation on the number of concurrent requests, since
you must know in advance how many threads you
want to have (e.g. if the pool contains 16 threads and
you have to make 32 HTTP requests, it will take about
twice the time compared to directly spawning 32
goroutines)

- It wouldn’t be a realistic benchmark if the pool
contains all the necessary threads, because this isn’t
replicable in real applications

NO
BUT

There are some exceptions
where goroutines pools are

the standard (e.g. with
persistent DB connections)

Erik Pellizzon

Go Developer
Freelancer

https://erikpelli.pp.ua

Download the slides
of this presentation

LinkedIn

Q&A time

Looking for
collaborations

https://erikpelli.pp.ua
https://www.linkedin.com/in/erikpelli/

