Erik Pellizzon
Software®Engineer

improcve

WEB@DAY
055

Kudos

improocve

Network

Upper Layer Muﬂigo
Upper f-- oo t’:"yg Upper Layer | |------eemeee- *| Upper
Layers f-q---ccommemmm s Headers (Appiication) Data | |.............. .'| Layers
Al F
TCP/UDP Message 4
TP/ pt e TCPAUDP ‘l’m’: upperLayer | |-o-oooeeeeee | Tep s
)0 5 A0 4QaEiin e At oo Header |\ Hers | (Application] Data) |.............. | UDP
i 7
f P Dmagr;m i
Lo Uppet || i i B e IS
P [TCPUDP Upper Layer :
IR T Header | Header H::‘:;s (Apphication) Data | |-« --ooveveenn 4 P
il
Layer 2 Frame i
Layer || | Layor2 | @ [rcpmoe| PP Upperlayer | Layec2 ||) Layer
2 §-3--] | Header | Header | Header Hoaders (Application) Datal Footer | f----p
L : i
|l!1l0f J

= process to process -
Application Layer HITP v HTTP
‘ host to host
Transport Layer
A
Intemet Layer

Link Layer

TCP (1974)

Client Server
Sends ‘SYN’ SYN
(seq=m) -\) Receives'SYN’
(seq=m)

Sends’'SYN’
sy ¥ A (seq=n)
Receives'SYN’ Sends ‘ACK’
(ack = m+1)

(seq =n)
Receives’ACK’ 8 Bytes
(ack = m+1)
Sends ‘ACK’ Ack UDP Header UDP Data
(ack= n+1) \’ Receives’ACK’
(ack = n+1)
3-Way Handshaking(for establishing connection)
Source port Destination port
16 bits 16 bits
Length Checksum
16 bits 16 bits

HTTP

Version

HTTP/O
HTTPA
HTTP/L
HTTP/2
HTTP/3

.9 1991
.0 | 1996
a | 1997
2015
2022

Obsolete
Obsolete
Standard
Standard
Standard

0

0

33.8%

35.3%
30.9%

HTTP History

Year introduced Current status | Usage in August 2024 | Support in August 2024

100%

| 100%
| 100%
| 66.2%
30.9%

HTTP/1.0 (Introduction from its paper)

First web server (1990) by
Tim Berners Lee

HTTP/0.9 is based on it:

only GET request

only HTML response

no headers or status codes
designed to serve static files

The Hypertext Transfer Protocol (HTTP) is an application-level protocol with the lightness and speed necessary
for distributed, collaborative, hypermedia information systems. HTTP has been in use by the World-Wide Web
global information initiative since 1990. This specification reflects common usage of the protocol referred to as
"HTTP/1.0". This specification describes the features that seem to be consistently implemented in most
HTTP/1.0 clients and servers. Those features of HTTP for which implementations are usually consistent are
described in the main body of this document. Those features which have few or inconsistent implementations are

listed in Appendix D.

https://www.w3.org/Protocols/HTTP/1.0/spec.html
https://www.w3.org/Protocols/HTTP/1.0/spec.html#Additional
https://http.dev/0.9

HTTP/1.0

Request

POST / HTTP/1.0\r\n
Accept: */"\r\n
Referer: https://www.google.com/Ar\n

User-Agent: Mozilla/5.0 (X11; Linux x86_64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/133.0.0.0 Safari/537.36\r\n

Content-Length: 13\r\n
Content-Type: text/htmI\r\n
\r\n
<h1>ping</h1>

body

w = 0O 0O 9 ® I

Response

200 OK\r\n
Server: Apache\r\n
\r\n

time
1) TCP
connection
open

2) Client
Request

3) Server
Response

4) TCP
connection
close

1XX

Informational codes

Success codes

Redirection codes

Client error codes

—

Server error codes

The server acknowledges
and is processing the request.

The server successfully received,
understood, and processed the request.

The server received the request,
but there's a redirect to somewhere else
(or, in rare cases, some additional action

other than a redirect must be completed).

The server couldn’t find (or reach)
the page or website. This is an error
on the site’s side.

The client made a valid request, but

the server failed to complete the request.

Methods
GET
HEAD
POST
Appendix D)
PUT
DELETE
removed in 1.1)
K (removed in 1)

HTTP/1.

Methods:

- OPTIONS (e.g. CORS)

- GET

- HEAD (no body in response)

- POST (create)

- PUT (full update)

- PATCH (partial update)

- DELETE

- TRACE (ping, not always implemented)
- CONNECT (e.g. HTTP proxies)

Header names are now case insensitive.

Host header is now mandatory, we can
start hosting multiple websites in the same
server (Host: www.google.it).

There are many new standard HTTP
headers (here the list), the result of 18
years of additions.

https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

Persistent connections

Client Server

Establish connection

e
e

Close connection

-

Establish connection

—_—

Close connection

Short-lived connections

Connection: close

Client Server

Establish connection

—

b

awi|

Close connection

Persistent connection

Connection: keep-alive
(default)

T

Client Server

Establish connection

—

T
—]
]
“«—
o
—
——
o
I
-

HTTP Pipelining

Disabled by
default,
implemented by
HTTP/2 as
multiplexing

https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x

HTTPS (optional)

We encrypt the data sent over the
connection so so they can't be read by
third parties.

The protocol for the data format remains
the same (HTTP), but everything is sent
(and received) securely using SSL
(deprecated) / TLS.

TLS requires a reliable connection in order

to work (such as TCP).

Client

_q

ClientHello

Server

ServerHello
Certificate
ServerHelloDone

. ChangeCipherSpec
i "%lanlgphed

Swos
dol

SWoLL
S1L

THE END?

Where common knowledge ends

HTTP/2 (2015): Security & Performance

- TLS 1.2+ is mandatory (security)
- h2 vs h2c (h2c is almost never
used)
- Based on SPDY, an experimental TP 2 0 roquest: o O R Ao e s I Ea e e osnasets .omsi, .k

e Zed
3F 85 61 09 1A 6D 47 87 53 03 2A 2F 2A 50 8E 98B ?.a..mG

. D9 AB FA 52 42 CB 48 D2 SF A5 11 21 27 51 8B 2D .RB.®._,.!'Q.-
Google prOJeCt 4B 70 DD F4 SA BE FB 48 @5 DE 7A DA DO 7F 66 A2 Kp..Z..€..z...f.

81 BO DA EG 53 FA DB 32 1A A4 9D 13 FD A9 92 A4S5..2........

. 96 85 34 OC 8A 6A DC A7 E2 81 04 41 84 4D FF 6A ..4..j.....A.M.j

_ _ 43 5D 74 17 91 63 CC 64 BO DB 2E AE (B 8A 7F 59 CJt..c.d.......Y
Binary, frame-based, supports Nl RR BEER TRy v

F6 1E 92 BO D3 AB 81 71 36 17 97 02 98 87 28 EC i qb (

multiple concurrent requests Gemmes
- Only 1 TCP connection ER
- Header names must be lowercase e tetinmi smuicationstaissat.aptseation/sat 0., smsge et /0.
(to avoid problems related to case
sensitivity in non-compliant
implementations)
- Not (directly) human readable

anymore
D

https://datatracker.ietf.org/doc/html/rfc9113
https://httpd.apache.org/docs/2.4/howto/http2.html

Preface

Each HTTP/2 connection initially sends this data
(preface):
PRI * HTTP/2.0\\n\r\nSM\r\n\r\n

If the server supports HTTP/2, it recognizes the
sequence and prepares to read HTTP/2 binary data.
Usually a server that supports HTTP/2 also supports
HTTP/14, to maintain compatibility with older browsers.

If the server supports only HTTP/11, it will return an error
similar to “PRI method is not supported”.

This sequence is similar to an HTTP/1.1 request and is
designed to return a readable error without breaking
the HTTP/1.1 parser.

Compatibility

. Chisiamo Google Store Gmai Immagini 3% Accedi
HTTP/2, despite differences in s

implementation, keeps the same HTTP GO gle

basic logic:

- Methods (GET, POST, etc.)

- Status codes (200, 404, etc.)
- Body

- Headers

- Request & Response

Clients that implement it use the same

Tv:136.0) Gecko/20100181 Fircfox/135
on/aml

public interface (e.g. fetch()) to perform the . el
HTTP request, and the underlying protocol : - — -
chosen is hidden from the user.

This “Raw” request is fake, generated by
Firefox using request data

“Upgrade” header

This header is supported only by HTTP/11. client server
Initially a normal HTTP/1.1 request is made, if TLS handshake (only with HTTPS)

the server includes this header in the
response, from there on the underlying
connection switches to the specified protocol.

GET/HTTP11 —m7—

200 OK
Upgrade: websocket

-+

It’s not used for an HTTP/2 handshake

because the handshake overhead is very - S~
high. Moreover, if it's used with an HTTP

connection (instead of HTTPS), TLS encryption WebSocket protocol

will be absent, and in this case only h2c¢ (not (binary)

-—

h2) is supported.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Upgrade

Direct HTTP/2

In this mode we send HTTP/2 data directly
to the server, without knowing if the server
supports the protocol.

It's obviously not currently used because it
isn’t acceptable to have an error because
we haven’t checked whether the new
protocol is supported.

Maybe in the future, when every server will
implement it?

client server

TLS handshake

PRI * HTTP/2.0\r\n\r\nSM\r\n}r\n

HTTP/2 protocol
(binary)

ALPN (TLS extension)

TLS is flexible and supports additional data
inside extensions included in the
ClientHello.

Along with HTTP/2, ALPN has been
created, to agree on a common protocol
directly during the TLS handshake, basically
eliminating the overhead required by
Upgrade.

If ALPN is not supported by the server, the
browser makes an HTTP/1.1 request (and it
may become HTTP/2 later if the server
specifies the “Upgrade: h2” header).

client server

TLS Handshake

ClientHello
ALPN: h2, http/11 :

ServerHello
ALPN: h2

PRI * HTTP/2.0\r\n\r\nSM\r\n}r\n

HTTP/2 protocol
(binary)

https://datatracker.ietf.org/doc/html/rfc7301

Multiplexing

Stream O | CONTROL

Stream 1 -

Stream 5 -

TLS/TCP Connection

O = Control stream
Odd = Client created streams
Even = Server created streams

Frames

9 bytes header

/

... Frame data ... _

/ \

Up to 224 -1 Their meaning
bytes, “16MB depend on the
(the length of the frame type
frame data
payload only) DATA
HEADERS

CONTINUATION

RST_STREAM, terminate specified stream ID
PRIORITY_UPDATE, RFC9218
PRIORITY, deprecated
PUSH_PROMISE, deprecated

TLS/TCP Connection

Connection Control frames (Stream 0)
SETTINGS
PING
GOAWAY, terminate connection
WINDOW_UPDATE, flow control

https://www.rfc-editor.org/rfc/rfc9218.html
https://www.rfc-editor.org/rfc/rfc9113.html#name-priority
https://developer.chrome.com/blog/removing-push
https://httpwg.org/specs/rfc7540.html#SETTINGS

Client

Closed

Stream state

HEADERS

END_STREAM flag

(request)

END_STREAM flag

(response)

Server

Closed

Stream Priority

Stream O

Stream 1

Stream 3

Stream 5

CONTROL

P=5

[REQUEST] ,_, fot
ReauesT | Response

3th

TLS/TCP Connection

Client priority is just a suggestion,
server could skip it

Reguest & Response

Stream 41 + other concurrent requests on streams

37 and 39
1 request =1 stream
frames ordering inside a stream is

guara nteed
Client Server
optlonal
user-agent: accept: */*
Mozilla/5.0 (X11; Flags:
Linux x86_64) END_HEADERS
END_STREAM

g @)
= | HEADERS DATA | DATA

server: Apache <h1>body</h1> <ht1>body2</h1>

24MB. co;ﬁlrétélggith: T Flags: END_STREAM
optional ‘
Flags: First I6MB

END_HEADERS

https://cabulous.medium.com/http-2-and-how-it-works-9f645458e4b2

Pseudo
Headers

Headers

Name Value
:method GET
‘path /
-authority google.it
:scheme https
user-agent Mozilla/5.0 (Android 15; Mobile;
rv:133.0) Gecko/133.0
Firefox/133.0
accept text/html
accept-language it-1T

HPACK compression

Client D Name Value Static Server
2 :method GET Table
Encoder meme Encoder
& Request &
Decoder - Decoder

2, 62=header1: valuel
62=header2: value2

Client Decoder _ o Server Decoder
Dynamic Table, 4KB default ,__—— DuD"CZted inclient —____ Dynamic Table, 4KB default
anda server
ID Name Value ID Name Value
Assigned by
62 header2 value2 client encoder — 1 62 header1 value1
] Request
Assigned by 2,62

server encoder h

62

https://datatracker.ietf.org/doc/html/rfc7541

Downsides

- Issues with unstable connections (e.g. 4G/5G in
mountain), a lot of TLS handshake round-trips

I C I TLS HANDSHAKE ‘ TLS HANDSHAKE ‘ TLS HANDSHAKE

- Limited concurrency, since we use only one
connection for all the streams

- Packet loss (TCP is ordered and every stream must wait for the resend)

lost resend
] stream 11 ' TCP Connectig)n

delay

HTTP/3

2022

Erik Pellizzon

https://erikpelli.pp.ua

Go Developer
Freelancer

LinkedIn

Looking for
collaborations

https://erikpelli.pp.ua
https://www.linkedin.com/in/erikpelli/

HTTP/3: HTTP/2 over QUIC

QUIC

Application-level protocol (can be
easily updated, unlike TCP)
Reliable connection built over
UDP (which is unreliable)

Everything is encrypted using TLS
1.3

HTTP semantics

Header compression

Header compression

(HPACK) Serverpush (OPACK) Server push

HTTP/2

Prioritization

Stream multiplexing

Authentication Key negotiation

TLS

Session resumption / 0-RTT

HTTP/3

Prioritization

Stream multiplexing

Authentication ~ Key negotiation

15

Session resumption / 0-RTT
Enaryption/dearyption Encyption/dectyption
Connection migration
Congestion -~ Congestion o
weston TCP setasmy metn QUIC ety
(onnection oriented Connection orfented
Port numbers

UDP

Port numbers

IPv4 /IPv6

QUIC Initial Packet

N /
UDP Datagram 2 - Server hello and handshake

https://quic.xargs.org/

ORTT (TLS 1.3)

To reduce the time required to
establish a new connection, a client
that has previously connected to a

server may cache certain parameters
from that connection and subsequently
set up a O-RTT connection with the
server. This allows the client to send
data immediately, without waiting for a
handshake to complete.

https://github.com/bagder/http3-explained/blob/master/en/quic-0rtt.md

HTTP Request over TCP+TLS (with 0-RTT)

Client

TCP SYN

— g
TCP SYN + ACK
“—

T TCP ACK

/

———
TLS ClientHello

/

~——
HTTP Request
\

——
TLS ServerHello

e
HTTP Response
Ul

—
TLS Finished

A

CLOUDFLARE’

HTTP Request over QUIC (with 0-RTT)

Client Server
B | e | B3
— 0 |— —a—

HTTP Request
D
Quic —
e
HTTP Response
&«
\
Quic
\
CLOUDFLARE'

Source

https://blog.cloudflare.com/even-faster-connection-establishment-with-quic-0-rtt-resumption/

QUIC streams

Data sent within a stream are
ordered, but each stream is
independent from the others

Sender
(open)

Sender
(open)

Unidirectional streams

Receiver

—0100101010 - (accept)
Bidirectional streams

—0100101010 - Receiver

10010100 ——— (accept)

Compatibility

QUIC runs over UDP, we can use both
TCP server (HTTP/11, HTTP/2) and UDP
(HTTP/3) on the same port (443).

Like HTTP/2, the public interface for
making requests is the same and the
HTTP version used for the request is
chosen by the implementation.

443

Alt-Svc header
chisiamo Google Store Gmal Immagn :if

Google

: [P Headers

https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Alt-Svc

HTTPS DNS record

How do HTTPS records work?

An HTTPS record can be set up for the domain sample-test.com asshown below:

www.sample-test.com. 1800 IN HTTPS 1 . alpn=h3,h3-29,h2 ipv4h @ {0
« »

Here's what each element represents:

www .sample-test.com isthe domain name.

1800 isthe Time To Live (TTL).

* IN representsthe class.

* HTTPS signifies the record type.

* 1 isthe priority, i.e., the number in the queue.

* . stands for the host if it is the same as the domain name.

* alpn=h3,h3-29,h2 specifies the application protocol versions.

» 1ipv4hint=1.2.3.4,9.8.7.6 specifies IPv4 addresses (this is optional.)

e ipv6hint=2001:db8:3333:4444:5555:6666:7777:8888,2001:db8:3333:4444:CCCC:DDDD:EEEE : FFFF
specifies IPv6 addresses (this is also optional.)

https://gcore.com/docs/dns/dns-records/what-is-an-https-record-and-how-is-it-configured

HTTP/3 streams

Bidirectional streams

Stream O - >
Stream 2 - >
Stream 4 - >

Even = Streams created by client
Odd = server (not used by HTTP/3)

Unidirectional streams

Client Server

SETTINGS Stream Type

Stream Type SETTINGS

Two control unidirectional
streams (type 0x00)

“This allows either peer to send data as
soon as itis able.”

https://datatracker.ietf.org/doc/html/rfc9114#section-6
https://datatracker.ietf.org/doc/html/rfc9114#control-streams
https://datatracker.ietf.org/doc/html/rfc9114#control-streams

Frames

variable length header
(up to 62 bits, aka 4,194,304TB)

e Bidh Stream

UDP
DATA
HEADERS .
CW not needed with Connection Control frames

variable length SETTINGS

GOAWAY

PRIORITY UPDAT‘E/ handled by QUIC —___ I
PUSH_PROMISE, deprecated \ W W_ -

CANCEL_PUSH, deprecated

MAX_PUSH_ID, deprecated “END=SFREAM" flag

https://datatracker.ietf.org/doc/html/rfc9000#name-variable-length-integer-enc
https://datatracker.ietf.org/doc/rfc9218/

QPACK

Based on unidirectional streams

https://lianglouise.github.io/post/qpack_guide/

Download the slides

WEB@DAY
055

Thanks!

improcve

