
2025

You don't really know HTTP

Erik Pellizzon
Software Engineer



2025

Kudos



Network





TCP (1974)

UDP (1980)



HTTP



HTTP History

HTTP/1.0 (Introduction from its paper)

The Hypertext Transfer Protocol (HTTP) is an application-level protocol with the lightness and speed necessary 
for distributed, collaborative, hypermedia information systems. HTTP has been in use by the World-Wide Web 
global information initiative since 1990. This specification reflects common usage of the protocol referred to as 
"HTTP/1.0". This specification describes the features that seem to be consistently implemented in most 
HTTP/1.0 clients and servers. Those features of HTTP for which implementations are usually consistent are 
described in the main body of this document. Those features which have few or inconsistent implementations are 
listed in Appendix D.

First web server (1990) by
Tim Berners Lee

HTTP/0.9 is based on it:
- only GET request
- only HTML response
- no headers or status codes
- designed to serve static files

https://www.w3.org/Protocols/HTTP/1.0/spec.html
https://www.w3.org/Protocols/HTTP/1.0/spec.html#Additional
https://http.dev/0.9


HTTP/1.0

POST / HTTP/1.0\r\n
Accept: */*\r\n
Referer: https://www.google.com/\r\n
User-Agent: Mozilla/5.0 (X11; Linux x86_64) 
AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/133.0.0.0 Safari/537.36\r\n
Content-Length: 13\r\n
Content-Type: text/html\r\n
\r\n
<h1>ping</h1>

Request

200 OK\r\n
Server: Apache\r\n
\r\n

Response

1) TCP 
connection 

open

4) TCP 
connection 

close

2) Client
Request

3) Server 
Response

time

h
e
a
d
e
r
s

body



Methods
GET
HEAD
POST
Appendix D)
PUT
DELETE
LINK (removed in 1.1)
UNLINK (removed in 1.1)



HTTP/1.1
Methods:

- OPTIONS (e.g. CORS)
- GET
- HEAD (no body in response)
- POST (create)
- PUT (full update)
- PATCH (partial update)
- DELETE
- TRACE (ping, not always implemented)
- CONNECT (e.g. HTTP proxies)

Header names are now case insensitive.
Host header is now mandatory, we can 
start hosting multiple websites in the same 
server (Host: www.google.it).
There are many new standard HTTP 
headers (here the list), the result of 18 
years of additions.

https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers


Persistent connections

Disabled by 
default, 

implemented by 
HTTP/2 as 

multiplexing

Connection: close Connection: keep-alive
(default)

https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x


HTTPS (optional)
We encrypt the data sent over the 
connection so so they can't be read by 
third parties.

The protocol for the data format remains 
the same (HTTP), but everything is sent 
(and received) securely using SSL 
(deprecated) / TLS.

TLS requires a reliable connection in order 
to work (such as TCP).

HTTP

TLS

TCP



THE END?
Where common knowledge ends



HTTP/2 (2015): Security & Performance
- TLS 1.2+ is mandatory (security)
- h2 vs h2c (h2c is almost never 

used)
- Based on SPDY, an experimental 

Google project
- Binary, frame-based, supports 

multiple concurrent requests
- Only 1 TCP connection
- Header names must be lowercase 

(to avoid problems related to case 
sensitivity in non-compliant 
implementations)

- Not (directly) human readable 
anymore

https://datatracker.ietf.org/doc/html/rfc9113
https://httpd.apache.org/docs/2.4/howto/http2.html


Preface
Each HTTP/2 connection initially sends this data 
(preface):
PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n

If the server supports HTTP/2, it recognizes the 
sequence and prepares to read HTTP/2 binary data.
Usually a server that supports HTTP/2 also supports 
HTTP/1.1, to maintain compatibility with older browsers.

If the server supports only HTTP/1.1, it will return an error 
similar to “PRI method is not supported”.
This sequence is similar to an HTTP/1.1 request and is 
designed to return a readable error without breaking 
the HTTP/1.1 parser.

2013



Compatibility
HTTP/2, despite differences in 
implementation, keeps the same HTTP 
basic logic:

- Methods (GET, POST, etc.)
- Status codes (200, 404, etc.)
- Body
- Headers
- Request & Response

Clients that implement it use the same 
public interface (e.g. fetch()) to perform the 
HTTP request, and the underlying protocol 
chosen is hidden from the user.

This “Raw” request is fake, generated by 
Firefox using request data



“Upgrade” header
This header is supported only by HTTP/1.1.

Initially a normal HTTP/1.1 request is made, if 
the server includes this header in the 
response, from there on the underlying 
connection switches to the specified protocol.

It’s not used for an HTTP/2 handshake 
because the handshake overhead is very 
high. Moreover, if it’s used with an HTTP 
connection (instead of HTTPS), TLS encryption 
will be absent, and in this case only h2c (not 
h2) is supported.

client

GET / HTTP/1.1

server

200 OK
Upgrade: websocket

TCP conn open

WebSocket protocol 
(binary)

TCP conn close

TLS handshake (only with HTTPS)

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Upgrade


Direct HTTP/2
In this mode we send HTTP/2 data directly 
to the server, without knowing if the server 
supports the protocol.

It’s obviously not currently used because it 
isn’t acceptable to have an error because 
we haven’t checked whether the new 
protocol is supported.

Maybe in the future, when every server will 
implement it?

client server
TCP conn open

HTTP/2 protocol 
(binary)

TCP conn close

PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n

TLS handshake



ALPN (TLS extension)
TLS is flexible and supports additional data 
inside extensions included in the 
ClientHello.

Along with HTTP/2, ALPN has been 
created, to agree on a common protocol 
directly during the TLS handshake, basically 
eliminating the overhead required by 
Upgrade.

If ALPN is not supported by the server, the 
browser makes an HTTP/1.1 request (and it 
may become HTTP/2 later if the server 
specifies the “Upgrade: h2” header).

client

ClientHello
ALPN: h2, http/1.1

server

ServerHello
ALPN: h2

TCP conn open

HTTP/2 protocol 
(binary)

TCP conn close

TLS Handshake

PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n

https://datatracker.ietf.org/doc/html/rfc7301


Multiplexing

TLS/TCP Connection

REQUESTStream 1

Stream 3

Stream 5

RESPONSE

Stream 0 CONTROL

REQUEST

REQUEST RESPONSE

RESPONSE

0 = Control stream
Odd = Client created streams
Even = Server created streams



Frames

Length (24) Type (8) Flags (8) Reserved (1) Stream ID (31) … Frame data …

9 bytes header

TLS/TCP Connection

Their meaning 
depend on the

frame type

Up to 2^24 -1 
bytes, ~16MB

(the length of the 
frame data 

payload only) DATA
HEADERS

CONTINUATION

RST_STREAM, terminate specified stream ID
PRIORITY_UPDATE, RFC9218

PRIORITY, deprecated
PUSH_PROMISE, deprecated

Connection Control frames (Stream 0)
SETTINGS

PING
GOAWAY, terminate connection
WINDOW_UPDATE, flow control

https://www.rfc-editor.org/rfc/rfc9218.html
https://www.rfc-editor.org/rfc/rfc9113.html#name-priority
https://developer.chrome.com/blog/removing-push
https://httpwg.org/specs/rfc7540.html#SETTINGS


Stream state
Client

Idle

Open

Half closed

Closed

Server

Idle

Open

Half closed

Closed

HEADERS

END_STREAM flag 
(request)

END_STREAM flag
(response)



Stream Priority

TLS/TCP Connection

REQUESTStream 1

Stream 3

Stream 5

RESPONSE

Stream 0 CONTROL

REQUEST

REQUEST RESPONSE

RESPONSE

P=5

P=10

P=7

1st

2nd

Client priority is just a suggestion, 
server could skip it

3th



Request & Response

HEADERS CONTINUATION

accept: */*
Flags:

END_HEADERS
END_STREAM

optional

user-agent: 
Mozilla/5.0 (X11; 
Linux x86_64)

Stream 41
1 request = 1 stream
frames ordering inside a stream is 
guaranteed

Client Server

Increments the ID

DATA

<h1>body</h1>

HEADERS

server: Apache
content-length: 

25165824
Flags:

END_HEADERS

+ other concurrent requests on streams
37 and 39

(1) (2)

(3) (4)

DATA

<h1>body2</h1>
Flags: END_STREAM

(5)

First ~16MB

24MB,
optional

https://cabulous.medium.com/http-2-and-how-it-works-9f645458e4b2


Headers

Name Value

:method GET

:path /

:authority google.it

:scheme https

user-agent Mozilla/5.0 (Android 15; Mobile; 
rv:133.0) Gecko/133.0 
Firefox/133.0

accept text/html

accept-language it-IT

Pseudo
Headers



HPACK compression

Client Server

ID Name Value

62 header1 value1

Request

2, 62=header1: value1

Static 
Table

Server Decoder
Dynamic Table, 4KB default

ID Name Value

2 :method GET
Encoder

&
Decoder

Request

2, 62

Assigned by 
client encoder

62=header2: value2

ID Name Value

62 header2 value2

Client Decoder
Dynamic Table, 4KB default

Assigned by 
server encoder

62

Duplicated in client
and server

Encoder
&

Decoder

https://datatracker.ietf.org/doc/html/rfc7541


Downsides

TCP
- Issues with unstable connections (e.g. 4G/5G in 

mountain), a lot of TLS handshake round-trips

TLS HANDSHAKE Request TLS HANDSHAKETLS HANDSHAKE Request

- Packet loss (TCP is ordered and every stream must wait for the resend)

TCP Connection

TCP 
Segment 1 
(Stream 11)

TCP 
Segment 2 
(Stream 13)

lost
TCP 

Segment 2 
(Stream 13)

resend
TCP 

Segment 3 
(Stream 11)

stream 11 
delay

- Limited concurrency, since we use only one 
connection for all the streams



HTTP/3
2022



Erik Pellizzon

Go Developer
Freelancer

https://erikpelli.pp.ua

LinkedIn

Looking for
collaborations

https://erikpelli.pp.ua
https://www.linkedin.com/in/erikpelli/


HTTP/3: HTTP/2 over QUIC



QUIC

- Application-level protocol (can be 
easily updated, unlike TCP)

- Reliable connection built over 
UDP (which is unreliable)

- Everything is encrypted using TLS 
1.3



QUIC Initial Packet

https://quic.xargs.org/


0RTT (TLS 1.3)

To reduce the time required to 
establish a new connection, a client 
that has previously connected to a 

server may cache certain parameters 
from that connection and subsequently 

set up a 0-RTT connection with the 
server. This allows the client to send 

data immediately, without waiting for a 
handshake to complete.

https://github.com/bagder/http3-explained/blob/master/en/quic-0rtt.md


Source

https://blog.cloudflare.com/even-faster-connection-establishment-with-quic-0-rtt-resumption/


QUIC streams
Data sent within a stream are 
ordered, but each stream is 
independent from the others

Unidirectional streams

0100101010

Bidirectional streams

0100101010
10010100

Sender 
(open)

Receiver 
(accept)

Receiver 
(accept)

Sender 
(open)



Compatibility
QUIC runs over UDP, we can use both 
TCP server (HTTP/1.1, HTTP/2) and UDP 
(HTTP/3) on the same port (443).

Like HTTP/2, the public interface for 
making requests is the same and the 
HTTP version used for the request is 
chosen by the implementation.

OS

443

443/UDP 443/TCP



Alt-Svc header

1 month

https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Alt-Svc


HTTPS DNS record

https://gcore.com/docs/dns/dns-records/what-is-an-https-record-and-how-is-it-configured


HTTP/3 streams

REQUESTStream 0

Stream 2

Stream 4

Even = Streams created by client
Odd = server (not used by HTTP/3)

Bidirectional streams Unidirectional streams

Client Server

Two control unidirectional 
streams (type 0x00)
“This allows either peer to send data as 
soon as it is able.”

Stream TypeSETTINGS

Stream Type SETTINGS

REQUEST

REQUEST

https://datatracker.ietf.org/doc/html/rfc9114#section-6
https://datatracker.ietf.org/doc/html/rfc9114#control-streams
https://datatracker.ietf.org/doc/html/rfc9114#control-streams


Frames

Frame Type (i) Length (i) … Frame data …

variable length header
(up to 62 bits, aka 4,194,304TB)

UDP
DATA

HEADERS
CONTINUATION

PRIORITY_UPDATE
RST_STREAM

PUSH_PROMISE, deprecated
CANCEL_PUSH, deprecated
MAX_PUSH_ID, deprecated

Connection Control frames
SETTINGS
GOAWAY

PING
WINDOW_UPDATE

not needed with
variable length

handled by QUIC

Bidi Stream…

“END_STREAM” flag

https://datatracker.ietf.org/doc/html/rfc9000#name-variable-length-integer-enc
https://datatracker.ietf.org/doc/rfc9218/


QPACK

HPACK

Based on unidirectional streams

https://lianglouise.github.io/post/qpack_guide/


Download the slides



Thanks!

2025


